Tron, a Combinatorial Game on Abstract Graphs
نویسنده
چکیده
We study the combinatorial two-player game Tron. We answer the extremal question on general graphs and also consider smaller graph classes. Bodlaender and Kloks conjectured in [2] PSPACEcompleteness. We proof this conjecture.
منابع مشابه
Playing weighted Tron on trees
We consider the weighted version of the Tron game on graphs where two players, Alice and Bob, each build their own path by claiming one vertex at a time, starting with Alice. The vertices carry non-negative weights that sum up to 1 and either player tries to claim a path with larger total weight than the opponent. We show that if the graph is a tree then Alice can always ensure to get at most 1...
متن کاملSome Algebraic and Combinatorial Properties of the Complete $T$-Partite Graphs
In this paper, we characterize the shellable complete $t$-partite graphs. We also show for these types of graphs the concepts vertex decomposable, shellable and sequentially Cohen-Macaulay are equivalent. Furthermore, we give a combinatorial condition for the Cohen-Macaulay complete $t$-partite graphs.
متن کاملPaired-Domination Game Played in Graphs
In this paper, we continue the study of the domination game in graphs introduced by Bre{v{s}}ar, Klav{v{z}}ar, and Rall. We study the paired-domination version of the domination game which adds a matching dimension to the game. This game is played on a graph $G$ by two players, named Dominator and Pairer. They alternately take turns choosing vertices of $G$ such that each vertex chosen by Domin...
متن کاملAll Ramsey (2K2,C4)−Minimal Graphs
Let F, G and H be non-empty graphs. The notation F → (G,H) means that if any edge of F is colored by red or blue, then either the red subgraph of F con- tains a graph G or the blue subgraph of F contains a graph H. A graph F (without isolated vertices) is called a Ramsey (G,H)−minimal if F → (G,H) and for every e ∈ E(F), (F − e) 9 (G,H). The set of all Ramsey (G,H)−minimal graphs is denoted by ...
متن کاملNotes on the combinatorial game: graph Nim
The combinatorial game of Nim can be played on graphs. Over the years, various Nim-like games on graphs have been proposed and studied by N.J. Calkin et al., L.A. Erickson and M. Fukuyama. In this paper, we focus on the version of Nim played on graphs which was introduced by N.J. Calkin et al.: Two players alternate turns, each time choosing a vertex v of a finite graph and removing any number ...
متن کامل